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with a definitely related Government procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furmished,
or in any way supplied the said drawings, specifications, or other data is not to be regarded by mplication or
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SUMMARY

The intent of this program was to optimize the controls and accessory systems
for the next generation of small turboshaft gas turbine engines for Army heli-
copter applications., A 1977 development time trame was considered for the
engine. A primary objective of the program was to reduce vulnerability of the
controls and accessory components without severely compromising other impor-
tant design criteria. The effort was accomplished by closely coordinating the
study, selection, and design of the controls and accessory (C&A) components
with consideration for their integration within the engine.

The program was divided into three phases. During the Phase I conceptual design
phase, analyses and preliminary designs of C&A configurations for both front-
and rear-drive engines were accomplished. The candiate C&A systems were
evaluated using weighted selection criteria, and two candidate rear-drive C&A
systems (Tower Shaft/Air Turbine Starter, Cluster Gearbox/Air Turbine Starter)
were recommended for further detailed design study.

With Army approval of the two recommended candidate C&A systems, the Phase II
detailed design effort was initiated. The early part of the Phase II effort was
directed toward analyses and selection of one system for detailed design. A tower
shaft C&A drive with an air turbine starter was selected, and a detailed system
design of all C&A components was accomplished. The critical items of the C&A
system were identified and test programs were recommended for Phase III.

The Phase III critical item test programs were selected by the Army, and de-
velopment testing of the following critical items was accomplished: (1) fuel pump
inducer (inlet suction tests), (2) high-speed oil pump (cavitation tests), (3) elec-
tronics cooling techniques (performance tests), (4) power turbine overspeed
sensor (performance tests), and (5) starter overrunning clutch (endurance tests).

Recommendations for future C&A system development programs were made.
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SECTION I

INTRODUCTION

A, PROBLEM STATEMENT AND APPROACH

Engine technology for military helicopters is advancing toward more reliable,
higher performing, lighter weight engines with low vulnerability and simplified
maintenance. Much of the advance in this technology has been accomplished by
increasing the rotational speed of the major engine parts, which has reduced engine
size. To avoid large, heavy, and extremely complex control and accessory (C&A)
systems, it has been necessary to keep the state of the art of the C&A systems
abreast of engine development.

Previously funded Army programs have contributed to the reduction of C&A com-
ponent cost, size, and improvement of packaging. The Integrated Accessory Sys-
tems for the Small Gas Turbine Engines program was directed toward the continued
advancement and optimization of small gas turbine engine C&A systems through
study and evaluation techniques to (1) combine the component functions into inte-
grated modules and (2) integrate component functions into the basic engine design.
The program closely coordinated the design of the C&A components and the
accessory drive system with the design of the engine interfaces before the engine
configuration was firmly established.

The major problem in meeting the goal of this program was to establish a C&A
system that incorporates, at its proper level, each of the established perform-
ance and design criteria. Reliability is of major importance, but, in a military
application, a reliable component that is also highly vulnerable to combat
threats is a poor compromise. Integratine the components within the engine

to reduce the exposed area, providing high-speed or dual-function components,
or locating the components so that the critical items are shielded by the engine
structure were means of achieving such reduced vulnerability. The develop-
ment risk and cost of these integration techniques were considered to reflect
the growing concern for cost reduction, The impact on overall engine perform-
ance and weight was reflected in the system design. Since an Army helicopter
must be field maintainable, the C&A implementation also considered component
repair or replacement. The problem was therefore not just one of component
integration, but component integration in a manner which did not severely com-
promise other important operational criteria.

B. DESCRIPTION OF APPROACH
The program was divided into three phases: (1) Conceptual Design, (2) Detailed

Design, and (3) Critical Item Fabrication and Test. These phases are described
in the following paragraphs.

1. Conceptual Design Phase
a. Conceptual Design Phase - Front Drive Engine

(A program outline for this phase is shown in Figure 1.)
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A preliminary front drive engine component sizing and flow-
path arrangement was established. The basic engine com-
ponents were guided by the specified engine description
(Appendix A).

The required control and accessory components and their
performance requirements were defined. These components
included the following:

Fuel Control

Fuel Pump

Engine Lubrication System

Starter

Electrical Power Generation for Engine Use
Variable=-Geometry Actuator

Aircraft Accessory Pad (15 hp at 20,000 rpm)
Compressor Bleed Valve

Anti-Ice Valve

Ignition System,

A review of previous USAAMRDL and other Government-
sponsored programs was made, and component vendors
were surveyed to establish component technology levels
compatible with the engine development time frame of
1977,

The candidate control and accessory drive techniques were
defined, This effort utilized the results of the Turbine En~
gine Advanced Accessory Drive System Study (AFAPL
Contract F33615-72-C-1170) where applicable.

Candidate integrated control and accessory systems ap-
plicable to a front drive engine were identified, and 10
systems were selected on a qualitative basis for prelimi-
nary design evaluation,

A preliminary analytical and mechar;‘ical design analysis
was conducted to evaluate the 10 candidate schemes and
to recommend 5 candidates for further analysis.

Analytical and mechanical integration studies of the five
selected systems were performed, and two integrated sys-
tems were recommended for further analysis.

b. Conceptual Design Phase - Rear Drive Engine

(A program outline of this phase is shown in Figure 2,)

1.

A preliminary rear drive engine configuration was defined.
The control and accessory components were the same as
defined for the front drive arrangement.

Candidate control and accessory drive techniques were defined,
and six systems were selected on a qualitative basis for pre-
liminary evaluation.
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3. Analytical and mechanical design analyses were conducted
to evaluate the six systems and recommend two systems for
further analysis.

4, An assessment of both the front and rear C&A drive/engine
starter system candidates was made, and a recommenda-
tion was made to the Army for approval to proceed with
the Detailed Design Phase.

2. Detailed Design Phaso
(A program outline for this phase is shown in Figure 3.)

1. Preliminary design layouts were provided that define the
packaging, interfaces, volumes, environment and mechanical
implementation of the two candidate systems selected in the
Conceptual Design Phase.

20 Design analysis support was provided for the layout effort
to establish the component sizes and weights and the effects
on overall system performance. Prelimwmary reliability,
maintainability and vulnerability assessme its of the two
systems were made. Evaluations of relative cost, develop-
ment risk and instauation flexibility were also made.

3. Trade-off studies of the two systems on the basis of selec-
tion criteria and rating factors were conducted, and one
integrated system was recommended for design,

4, Preliminary control and accessory system component speci-
fications were established that identified the interface and
performance requirements,

5. A design of the selected system control and accessory com-
ponents, through a combined P&WA 2nd vendor effort, and
with sufficient detail to identify any high-risk areas, was made.

6. A design of the selected C&A /engine interfaces, in sufficient
detail to show mechanical implementation and to identify any
high-risk areas, was made.

@ The high-risk components or subsystems were identified
and ranked in order of priority from a ciandpoint of further
required development,

8. A test plan and a cost estimute for a test program to evalu-

ate each identified high-risk component or subsystem were
prepared.
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Fabrication and Test Phase

1.

o

Test rigs to allow the selected tests to be conducted were
fabricated. Test rigs and C&A har:iware in existence from
previous contracts were reviewed and utilized to the fullest
extent possible,

The component or subsystem functional and endurance tests
were conducted in accordance with the approved test plan to
fully evaluate the high-risk aspects of the component or sub-
system. Critical interface conditions for the components
which were identified in the Detailed Design Phase were simu-
lated.

The initial test results were evaluated, and the components
were modified and retested as required for full evaluation,

After completion of all tests, the test results were evaluated

for relative success or failure to meet the previously estab-
lished performance and endurance goals.
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SECTION II

REQUIREMENTS DEFINITION - FRONT-DRIVE POWER TURBINE

A baseline engine configuration was established as a starting point for the C&A
optimization studies., The detailed engine requirements are outlined in the engine
description, included in Appendix A, The engine requirements are summarized
below:

3 1b/sec Airflow

600-hp Power Turbine

1977 Development Time Frame

Dual Engine Installation

Front Drive Power Turbine

15 hp, 20,000 rpm, PTO

Emergency Oil System - 6-min Capacity

A baseline was derived from previous and current small engine design activities
at FRDC. The engine technology was selected to be consistent with the develop-
ment time frame.

A cross section of the basic engine without controls and accessories is shown
in Figure 4. Since it was the intent of this study to optimize the overall C&A

system, this layout was used only as a starting point for the study to establish
the basic engine component sizes, flowpath, and bearing configurations, The
engine design characteristics are outlined below:

65,000 rpm - Gas Generator

26,000 rpm - Power Turbine

2350°F - Turbine Inlet Temperature

10:1 Pressure Ratio - Compressor

Semireverse Flow, Fjector Type - Inlet Particle Separator (IPS)

The engine configuration consists of a single-stage centrifugal compressor, an
annular combustor, and a single-stage, cooled, axial turbine. The power turbine
is a two-stage, uncooled, axial turbine with the shaft concentric with the gas
generator rotor.

The centrifugal compressor has a separate inducer, pipe diffusers, and a variable
inlet guide vane assembly. The centrifugal compressor offers the advantage of
being less vulnerable than an axial or axial/centrifugal design.

The combustor is a full-annular, radial-inflow design using advanced cooling
techniques and air-atomizing fuel nozzles. Combustor liner cooling is accom-
plished through tte use of a finned, double-wall-construction technique,
FINWALL ®. '
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The gas generator turbine consists of a single high-work stage, with convectively
cooled vanes and blades, and includes a thermal-response rotor tip shroud to
control tip leakage. The control ring structure that surrounds the turbine blade
row also adds vulnerability protection.

A two-stage, axial power turbine is necessary for acceptable engine performance
with a front drive engine of this size. The rotor is limited in allowable operating
speed due to critical speed of the power turbine shaft; therefore, two stages are
necessary to obtain the desired turbine efficiency.

1. Bearings and Seals

An engine bearing and seal configuration, consistent with the 1977 development
time frame, was established. The system was configured for low heat genera-
tion to minimize the size of vulnerable heat exchanger components. A backup oil
system, with a 6-min emergency operational capability, was required. The
recommended baseline engine bearing and seal configuration is described as
follows:

1. Front Bearing Compartment
Oil-Lubricated, Antifriction Bearings (3)
Hydrodynamic Lift-off Seals (2)

Carbon Intershaft Seal
Elastomeric Damper

2, Rear Bearing Compartment
Tilting Pad Air Bearings (2)

3. Heat Exchanger

Air/0il Heat Exchanger - Integral with front bearing compartment
Oil Temperature - 200 to 250°F

4, Backup Oil System
Oil Mist - 6=min capability

The hybrid air bearing/oil-lubricated bearing configuration was selected, based
on the requirement that some type of oil-lubricated gearing to the gas generator
shaft in the front compartment would most likely be required. Additionally, the
oil-lubricated bearings have a greater capacity for the radial load that can be im-
posed by misalignment of the power turbine shaft with the airframe gearbox.

Air bearings are planned for the rear compartment to reduce engine vulnerability
by eliminating oil system components and to reduce the size of the oil heat ex-
changers. A typical air bearing configuration, using tilted pad air bearings, is



shown in Figure 5. Mechanical Technology, Incorporated, has successfully
tested tilted pad air bearings for stop-start and high-temperature material
evaluation, (1) Other manufacturers have successfully evaluated foil-type
bearings. The final air bearing configuration will not be established 2s a part
of this program, but the present state of the art indicates that, with a con-
tinuing research and development effort, air bearings are a reasonable risk
for an engine starting development in 1977.

Air bearings in the rear compartment can operate at higher temperatures than
the oil-lubricated system and, therefore, simplify the overall cooling and the
rear compartment insulation requirements. The airflow requirements for the
bearings are reduced by the higher operating temperatures due to the viscosity
effects. Bleed air requirements are estimated at 0,05 to 0,10 1b/sec.

Hydrodynamic lift-off seals will be used where the available envelope allows.
This will significantly reduce the oil cooling heat load due to elimination of the
rotational friction. The rotating intershaft seal is proposed as a conventional
carbon face seal because of the limited envelope available,

Hydrodynamic lift-off seals (shrouded Rayleigh step lift pads operated with a

gas film separating the sealing faces) have been designed, fabricated, and tested
at P&WA.(2) Tests have demonstrated the feasibility of operation at gas tempera-
tures to 1200°F, pressure differentials to 300 psi, and sliding speeds to 500 ft/sec.
Conventional contact seals are used in place of labyrinth seals when air and oil
leakage is a problem, Their disadvantage is high wear,

Elastomeric dampers are recommended to replace oil film dampers to improve
engine vulnerability. In-house IR&D testing of elastomeric dampers indicates
adequate life, better tip clearance control, more design freedom with stiffness
and damping coefficients, and better operation with rotor unbalance that might
be caused by combat damage.

Engine heat generation has been reviewed in sufficient detail to establish the
need for an air/oil cooler. A fuel/oil cooler will not have sufficient capacity

at flight idle. Two air/oil cooler configurations were considered: (1) a heat
exchanger located on the inlet OD that uses channeled pressurized oil, and (2)

a heat exchanger located on the inlet ID that uses oil mist on the front compart-
ment wall, The first approach uses a separate air/oil heat exchanger and trans-
fers the heat to the air that is bypassed in the IPS. The recommended system
uses the front bearing compartment as an integral heat exchanger and transfers
the heat into the main engine airstream,

(l)Swenson, K. R., N. M. Hughes, and D. F. Hever, EVALUATION OF GAS
LUBRICATED HYDRODYNAMIC BEARINGS IN A GAS TURBINE ENVIRON~-
MENT, Report No. AFAPL-TR=-72-41, June 1972,

) povinelli, V. P., and H. H. McKibbin, DEVELOPMENT OF MAINSHAFT
SEALS FOR ADVANCED AIR BREATHING PROPULSION SYSTEMS, Phase I,
Report No. NASA CR-72737, PWA-3933, and Phase II, NASA CR=-72987,
PWA-4263.
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Use of the finned inlet ID concept results in a performance penalty, A 3.2°F
rise in average inlet temperature was calculated at flight idle. A 1°F rise in

T2 will increase SFC 0.13% and decrease SHP 0,4%. These values are based on
a bulk temperature rise.

An emergency air/oil mist system is recommended to further reduce vulner-
ability. Emergency air/oil mist systems have been tested and proved feasible
for 6-min operation.

The problems with air/oil mist are:

1. Determining the proper oil and air mixture for each
bearing.

2, Cooling the inner races more effectively than the outer to
control thermal distortion,

3. Scavenging air from the compartment,

4, Determining proper oil mist line velocity to avoid problems
of condensation,

A simplified oil system that is used only in the front compartment is more
amenable to an oil mist backup system than an engine with multiple oil-lubricated
bearing compartments.

A detailed analysis of an air/oil mist lubrication system is presented in
Section VII,

2, Inlet Particle Separator

The IPS is a semireverse flow separator, which is integrated into the compres-
sor inlet case and uses scavenge airflow from a hot air ejector incorporated in
the engine exhaust nozzle. A schematic of this system ts shown in Figure 6,
The fixed-geometry tailpipe ejector requires no valves or blower. The use of
preswirl vanes is also not required. The design of the ejector must be carefully
coordinated with the power turbine and IR suppressor designs to assure proper
ejector performance over the operating range.,

Current development work on erosion-resistant coa&ygs for engine components
indicates potential application in advanced engines, The optimum engine dust
protection system may incorporate both a simple IPS and basic erosion-resistant
protection to the engine components,

(®)McAnally, W. J., I, EROSION RESISTANT COATINGS FOR TITANIUM,
Pratt & Whitney Aircraft, AMMRC CTR73-6, January 1973.
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EJECTOR

DUCT

Figure 6. Semireverse Flow Inlet Particle
Separator

A detailed design of the IPS was not established during this program. The IPS
design was considered flexible to accommodate integration of the C&A com-
ponents. Partial inlet or radial inlet IPS configurations, as shown in Figure 7,
were considered.

3. Starter

The engine starting horsepower requirements were analyzed in detail, since
they have a significant impact on the C&A system design. The engine rotor para-
sitic losses were based on applicable rig data and are shown in Figure 8. The
minimum engine starting speed was based on a'prediction of where stable com-
pressor operation would be expected after ignition and is illustrated on the rep-
resentative compressor map shown in Figure 9. The motoring torque for the
engine for standard and cold day is shown in Figure 10. The starter was sized
for a 2 ft-1b torque margin above the cold day requirements. The relationship
of starter horsepower to light-off speed is also shown on Figure 10. For a sea-
level cold-day start, the starter size was established at 16 hp at the light-off
speed of 16,000 rpm. The required torque-speed relationship is shown in Fig-
ure 11, The starter was sized to accomplish a 30-sec, sea-level, standard-day
start time,

4, Controls and Accessories

The requirements for the C&A components were established, and a preliminary
definition of the component configuration was made to aid in the overall system
selection. The Chandler Evans Corporation (CECO) was subcontracted to
support definition and design of the control system components. The CECO
effort under Contract DAAJ02-70-C-0002, Advanced Engine Control Program
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for 2 to 5 1b/sec Airflow Engines, was used to guide the control component
designs, where applicable. The following C&A components are required:

Fuel Control and Sensors
Fuel Pump

Inlet Guide Vane Actuator
Compressor Bleed Valve
Anti-Ice Valve

Alternator

Ignition System

Starter

Lubrication System

A detail description of the component requirements and the component imple-
mentation is presented in Section VII,
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SECTION III

SELECTION CRITERIA FOR CANDIDATE SYSTEMS

The following general performance and design criteria were utilized during the
concept selection and design phases of this program as they applied to the overall
engine C&A system under consideration and are presented in order of their
estimated relative importance.

Reliability - The reliability (safety, mission and unscheduled
maintenance) of the system considering the actual operational
environment of U. S. Army helicopters.

Vulnerability Resistance - Of primary consideration is the vulner-
ability to small-arms fire., In addition to actual direct damage, the
effects of secondary damage, fire and overall survivability were
considered.

Development Risk - This is a judgment that was based on the present
state oE the art of the component being considered and its projected
rate of development (assuming a moderate effort is specifically
applied) over the total time frame involved, i.e., formal develop-

ment initiation in 1977.

Cost - Projected production cost assuming a rate of 500 units per
year over a total period of 10 years.

Weight and Volume - Installed weight and volume of the engine C&A
system,

Performance - The ability of an individual component to perform
its required function(s) and its effect on overall system performance,

Maintainability - The relative ability of an individual component or
complete system to be maintained in an operational condition in the
least time, at the least cost and with a minimum expenditure of
support resources.

Installation Flexibility - The characteristics of the C&A system
which provide the least overall design complexity relative to the
engine's installation into a flight vehicle.

These criteria were established as a combined effort of the Army, P&WA, and
CECO and then assigned weighted values on the basis of recommendations of the
personnel associated with the program. The final weighted values for the
criteria are outlined below,
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Criteria Weight - Percentage

Reliability 23
Vulnerability 19
Development Risk 14
Cost 12
Weight and Volume 10
Performance 9
Maintainability 7
Installation Flexibility -6

100

The safety-oriented factors, reliability and vulnerability, received weighting
which accounted for 42% of the total. Reliability in a manned aircraft is, of
course, of prime importance and received a strong consideration in this analysis.
Vulnerability in a manned aircraft that is used for a military application that

has a high exposuvre to ground fire is another prime consideration, and in this
case was rated approximately 80% of the value assigned to reliability.

The cost-oriented factors, development risk and production cost, received a
total of 26% of the total weighting, with cost rated slightly below development
risk. The development cost was reflected, to some degree, in the development
risk evaluation. While these considerations did not consider all of the factors
relating to life-cycle cost, it is not anticipated that a complete life-cycle cost
analysis, which was beyond the scope of the program, would have influenced
the overall ratings.,

The mission effectiveness oriented parameters, weight and voclume, and per-
formance, received 19% of the total and were rated approxirmately equal. The
operational oriented factors, maintainability and installation flexibility, re-
ceived 13% of the total, with flexibility rated slightly below maintainability.
Even though weight and volume, performance, maintainability, and installation
flexibility received a total weight of only 32%, it is important to recognize that,
while these criteria have a small weight in the basic system selection, their
importance was not overlooked in the detailed design.

These general categories are stmmarized below:

Rating Percentage

Safety 42
Cost 26
Mission Effectiveness 19
Operational Effectiveness 13

The primary goals of this program were safety and cost oriented, but the per-
formance and operational considerations received more attention as the final
system design was formulated.

To be considered a viable candidate, each system that was considered was re-
quired to exhibit a minimum level of performance in each criteria, For ex-
ample, a system that caused an unrealistic engine performance (TSFC) penalty
was not considered even though it was acceptable in the other areas, This step
was necessary to preclude the possibility of selecting a system, based on es-
tablished rating criteria, which would not be a reaiistic candidate.
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SECTION IV

CONCEPTUAL DESIGN ~ FRONT DRIVE ENGINE

A, SELECTION OF TEN CANDIDATE SYSTEMS

The C&A drive systems considered for this program were divided into 17 schemes.
The starter drive systems were broken into two basic divisions: mechanical drive
input and integral. A matrix of the candidate systems is shown in Table 1. The
matrix consists of the 17 C&A drive schemes corpbined with the two basic starter
drive systems, including eight types of starter dxive schemes. The total combina-
tion of C&A drive and starters creates 129 possible systems for study.

Each system was reviewed and several were logically eliminated. The remaining
systems required analysis to allow a decision to be made as to whether the con-
cept should have further consideration. The justification used for screening each
system is specified on the matrix and summarized in Table 2. The 10 candidate
systems selected for further evaluation are shown in Table 3,

¥ Candidate C&A Drive/Starter Systems

During the conceptual design phase, the method of driving the C&A components
and the method of starting the engine were emphasized. The C&A drive systems
and the starter systems originally considered in the study are described below:

1. Candidate C&A Drives
a. Mechanical

(1) Tower Shaft Drive - Tower shaft drive through a
gearbox with multiple gearing for the various
reg:ired accessory drives

(2) Cluster Gearbox - Cluster gearbox mounted about
centerline of engine with multiple gearing for
the various required accessory drives

(3) Single-Speed Module - Tower shaft drive through a
gearbox with a single drive shaft, All required
accessory drives run a the same speed from a
comp:on shaft,

b, Flectyical

(1) Integral Starter/Generator - Starter and generator
use same winding, housing:, ete., and are integrated
into the gas generator rotor. The electric generator
can drive one or multiple motors for the required
accessory drives

(2) Integral Generator - Electric generator is integrated
into the gas generator rotor and provides power
for the required accessory drives. Other starting
means must be employed.
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TABLE 2. IDENTIFICATION NOTES FOR THE STARTER -

C&A DRIVE SYSTEM MATRIX

10.

Considered a candidate C&A/starter system

Not technically feasible or considered beyond 1977 state of
development

Excessive TSFC penalty
Logistic requirements not compatible with mission

If a mechanical drive is required for start, no advantage to
another drive technique for the accessories

For hybrid systems, the starter and accessory drive modes
should be common

Excessive reliability penalty

An integral generator for control power only offers no advan-
tage if a separate accessory drive device is available

Excessive packaging penalty for the available space
Excessive vulnerability penalty

S - Starter Drive
D - C&A Drive

C. Pneumatic

(1) Cold Gas Bleed - Engine airflow gas bleed upstream
of the burner is used for providing power for the
required accessory drives.

(2) Bleed and Burn - Engine airflow gas bleed up-
stream of the main burner is fed through a separate
combustor, mixed with a fuel supply, and burned.
The combustion products are then used to provide
power for the required accessory drives.

(3) Interturbine Bleed - Engine airflow gas bleed down-
stream of the gas generator turbine is bled and
used to provide power for the required accessory
drives.

(4 Mixed Bleed - Engine airflow gas bleed is bled from
the engine, both upstream of the burner and down-
stream of the gas generator turbine. The hot and
cold gases are mixed to provide power for the
required accessory drives.
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d.

€.

Hydraulic

Integral Hydraulic Pump - A hydraulic pump is
integrated with the gas generator rotor, and the
hydraulic power from the pump is used to pro-
vide power for the required accessory drives.

Hybrid

(1)

)

@)

)

(5)

(6)

Any C&A Drive/Integral Generator - All accessories
are driven by mechanical, pneumatic, or hydraulic
power with an electrical generator integrated

with the gas generator rotor to supply electrical
power for the control and ignition system only.

Mechanical/Electrical Interface - A tower shaft
is used for driving an electric generator. The
generator Is used for powering the required
accessory drives.

Mechanical/Pneumatic Interface - A tower shaft
Is used for driving a separate air compressor.
The compressor is used for powering the required
accessory drives,

Mechanical/Hydraulic Interface - A tower shaft is
used to drive a separate hydraulic pump. The
hydraulic pump is8 used to power the required
accessory drives.

Auxiliary Power Unit - A self-contrined auxiliary
power unit supplies power for the required accessory
drives,

Mechanical Drive/Electrical Fuel Pump Interface -
An electric generator, integrated with the gas
generator rotor, will provide electric power for
driving a variable-speed pump, All other accessories
are driven by tower shaft,

Integral

1

Integral Fuel Pump, Oil Pump and Alternator -
All the accessories are integrated into the gas
generator rotor and operate at gas generator
speed.
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TABLE 3. TEN CANDI

s

Mechanical

Con

Pneumatic

A, Tower Shaft B.

Cluster Gearbox

A,
A, Cold Gas Bleed

Starters

Mechanical Starter Drives

Integral Starter Drives

A,

B,

C.

D,

A,

B,

C.

Electric Motor
1. APU/Generator
2, Battery

Hydraulic Motor
" 1, APU Supplied Hydraulics
2, Pressurized Blowdown

Pneumatic Motor
1. APU Bleed
2. APU Bleed + Fuel/Com-
bustor/Turbine Starter

Auxiliary Power Unit
1, Gas Turbine
2, Piston Engine
3. Wankel Engine

External Pneumatic Supply
(Cold Gas Impingement)

External Pneumatic/Fuel Supply/
Auxiliary Combustor (Hot Gas
Impingement)

External Pneumatic/Fuel Supply for
Engine Ram/Closed IGV's

1

®

3

%

®

-

Legend:

C— - Basic
= Deriv
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]

JANDIDATE SYSTEMS

Controls and Accessory Drives

Hybrid

D. Mechanical Gearbox
A, Mechanical Gearbox/ B. Mechanical Gearbox/ C. Mechanical Gearbox/ Driving Plus An Electrical
| Electrical Generator Compressor Hydraulic Pump Fuel Pump Drive

6 9

® 2

3] ®

- Basic C&A Starter System
- Derivative Starter Configuration




2,

Candidate Starter Systems

a.

Mechanical

(1)

(2)

@)

()

Mechanical/Electric - An electric-powered starter
driving a gearbox connected to the gas generator
rotor, Starting power provided by APU/generator
or battery system.

Mechanical/Hydraulic - A hydraulic-powered
starter driving a gearbox connected to the gas gen-
erator rotor. Starting power provided by APU/
hydraulic pump or accumulator blowdown,

Mechanical/Pneumatic - A pneumatic-powered
starter driving a gearbox connected to the gas
generator rotor. Starting power provided by
ATU bleed.

Self-Contained Starter - A self-contained gas
turbine, piston, or Wankel engine mechanically
connected to the gas generator rotor,

Integral

(1

@)

3)

)

Integral Electric - An electric starter integrated
with the gas generator rotor.

Integral Hydraulic - A hydraulic starter integrated
with the gas generator rotor,

Integral Pneumatic - An external APU supplying
bleed air, which is used in either of the three
following methods: cold gas impingement, heat
addition in the gas generator burner with closed
engine inlet, and hot gas Impingement using heat
addition in an external burner,

Cartridge - Solid grain hot gas generating device

used for driving the gas generator rotor directly
or through an intermediate system.
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2. Preliminary Screening Analyses

The logic and analyses used to preliminarily screen the candidate C&A drive/
starter system are summarized in the following section. These analyses reduced
the candidate C&A drive /starter system to 10 basic categories. These 10 cate-
gories included 26 possible C&A drive/starter combinations. Each of the candi-
date C&A drive and starter systems considered is described below.

a. C&A Drives
(1) Mechanical
The candidate mechanical C&A drives considered were:
1. Tower Shaft - Considered a candidate and is shown in Figure 12.

2. Cluster Gearbox - Considered a candidate and is shown in Fig-
ure 13.

3. Tower Shaft/Single-Speed Module - The use of a 20, 000-rpm,
single-speed C&A module was discounted on the basis of in-
compatibility with the oil pump system. A :ingle-stage
20, 000-rpm oil pump element is not a valid mechanical con-
figuration due to the disproportionate pumping element L/D
(7:1). A two-stage oil pump, using a centrifugal inducer,
was considered to be unduly complex when compared to a lcwer
rpm single-stage positive-displacement pump, The centrifugal
oil pump inducer is also subject to high blade loading at -65°F

conditions.
/\ PTO DRIVE
\\ Qz/
Acceu
Dmvss i

\ /"‘“-—-...\q__ i
\|

Figure 12, Candidate C&A Drive (Tower Shaft Drive)
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Figure 13.

(2) Electrical

AIRCRAFT/ENGINE
POWERSHAFT INTERFACE

. GAS GENERATOR ROTOR

4]

b o m———

Candidate C&A Drive (Cluster Gearbox
Drive)

The candidate electrical C&A drives considered were:

1.

Integral Starter/Generator - The integral starter/generator
illustrated in Figure 14 was discounted for the following reasons:

a.

Weight - The combined weight of the starter/generator,
or generator, accessory drive motor, power processor,
and engine cables was estimated at 54 to 58 1b, without
cooling provisions, which is considered to be excessive
for this engine size.

Vulnerability - The physical volume of the starter/
generator, motor, and power processor was esti-
mated at approximately 500 in., which would present

a large exposed critical area in a vulnerability analysis.

Tip Velocity - The tip velocity (60,000 ft/min) re-
quirements excced the current speeds used in aircraft
electrical starter/generators and would require an ad-
vanced development effort for confirmation. Engineer-
ing development in this area is proceeding in the field of
portable power packs using smaller diameter genera-
tor rotors operating at tip velocities of 63,500 ft/min,

The development activity for this engine integration
application is considered marginal with respect to the
1977 development time frame goal.

Envelope ~ The envelope requirement dictates that the
starter/generator or generator would have to be lo-
cated upstream of the compressor, which weuld severely
impact the inlet and IPS configurations due to the re-
quired diameter of 7.5 in. and the close axial location
relative to the compressor inlet,
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€. Maintenance - An integral starter unit would negate
or severely complicate field removal and replacement
of the starter unit,

f Engine Critical Speed - The incorporation of the genera-
tor rotor would require moving the forward bearing
support for the power turbine approximately 6 in, This
would impose severe critical speed problems on the
power turbine., Similarly, the incorporation of a 6~1b
overhung mass (generator rotor) on the gas generator
«mposes critical speed problems on this system. Inte-
gration of a generator v this horsepower class is not
considered to be technically feasible.

2, Integral Generator - The system was discounted for the same
reasons outlined for the integral starter/generator, since the
electrical component sizes are similar,

: ELECTRIC CONTROLS AND
| 5 cal ACCESSORY DRIVE MOTOR
= P Cag

/ 519 UJ"‘-:}fu .

P! = al
INTEGRAL ' ! ,‘ | -
GENERATOR _ ; . }
STATOR _\:'_ \, ;
\:|_ ng _.Jq - i
a % -'_-__. 4 " ,Lv:!:v?—*.‘:"_ﬂ’ 5 !
j’n-—"'-'l-"! e 0 : g

2] — B
S Bl

'
¥ | |
N

INTEGRAL GENERATOR ROTOR
{MOUNTED TO GAS GENERATOR ROTOR)

Figure 14, Integral Electric Starter/Generator

3) Pneumatic

Pneumatic drive schemes were considered in combination with the integral
starter systems only. The pneumatic drives in combination with a mechanical
starter system were discounted on the premise that a mechanical drive system
sized for the required starting power would be capable of a C&A drive, with
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no compromise in the drive system design. The study of the individual drive
techniques is summarized below:

1. Cold Gas Bleed -~ Considered a candidate and is illustrated
in Figure 15

2, Bleed and Burn ~ Discounted on the basis of complexity
3. Interturbine Bleed - Discounted on the basis of vulnerability

4. Mixed Bleed - Discounted on the basis of performance loss.

TURBINE

CONTROL

o il MANIFOLD
_ ﬂ ‘CB‘ﬁ‘

gl ‘ o

L =it Q
,A74'A1“\l % " ““H‘HJI
LN \ T \.;_}*Hmtj
J.'- f .._. ) i -.ZI__)""" rl:':-i !
—
f‘--..&_‘.' | I
¥ )V "

Figure 15, Candidate C&A Drive (Pneumatic Drive)
A discussion of the analysis follows.

The bleed systems, shown schematically in Figure 16, were analyzed at mini-
mum and maximum engine power levels as follows:

1. Sea level ram/cold day (100% power) - (Maximum engine
pressures, airflow, fuel flow, rotor speed, and turbine
powers)

2. 20, 000-ft ram/hot day (flight idle) - (Minimum engine pres-
sures, airflow, fuel flow, rotor speed, and turbine powers).

The engine conditions at these points are summarized below:

Engine Compressor Interturbine Ambient
Engine Power Airflow, Pressure, Temperature, Pressure, Temperature, Pressure,
Condition Ib/sec psia °R psia °R psia
SLR/Cold (100%) 4,3 208 1110 63 2200 14,7
20, 000-ft/Hot 1.25 21 925 10 1150 7.0

(Flight Idle)
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COLD BLEEDS HOT BLEED
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BLEED AND BURN MIXED BLEED

Figure 16, Candidate Pneumatic Drive Systems

The assumed accessory drive turbine requirements were: 25 hp at maximum
engine conditions and 16 hp at minimum engine conditions. The program re-
quirement of 15 hp for power takeoff at all flight conditions was the dominant
factor in these requirements, Other ground rules for the accessory drive
turbines are shown below:

Turbine Speed = 20,000 rpm at both flight conditions
Minimum AP/P for control valve and lines = 10%
Single-stage turbine

Maximum useful turbine AP/P = 4

Maximum turbine mean diameter = 5 in,

Minimum blade height = 0,30 in,

A turbine for driving the controls/accessories has a small power turndown

(25 to 16 hp) between the two flight points investigated. This is in contrast to the
gas generator engine turbine of 915- to 97-hp turndown or the power turbine of
860 to zero delivered horsepower. (Flight idle is full speed, but no delivered
horsepower for the power turbine,)

Because of this trend, shown in Figure 17, the accessory turbines are sized at
the low engine power point. Therefore, at the maximum power condition, the
accessory turbine will deliver much more power than the required 25 hp, Throt-
tling the accessory turbine system (with a control valve or variable admission
turbine) to produce only the required 25 hp provides an inefficient turbine bleed

system,

50



10
'.g 8
3 GAS GENERATOR
g TURBINE
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FLIGHT IDLE 100% POWER
(20,000 ft) (SEA LEVEL/RAM)

ENGINE CONDITION
Figure 17. Turbine Horsepower Turndown Ratio

The required bleed flows and engine ASFC are given relative to a conventional
tower shaft/gearbox for a constant power turbine delivered power and are shown

in Table 4,
TABLE 4. TOWER SHAFT GEARBOX TURBINE BLEED PERFORMANCE

Accessory System Turbine Engine
Drive Components Flow, lb/sec ASFC, %
1. Cold Valve and Fixed Turbine 0.644 + 8.3
(Exhaust Overboard)
2. Cold Variable Admission Tur- 0.875 + 5.9
(Exhaust to Inter-  °in€
turbine)
3. Interturbine Variable Admission Tur- 0.465 + 8.0
bine
4, Bleed and Burn Valve Fixed Turbine, 0,277 (air) + 6.7
Burner, and Fuel System +18,8 lb/hr
(fuel)
5. Mixed Valve, Fixed Turbine, 0.40 (cold) +19.0
Mixer 0.70 (hot)
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The two most promising systems of those investigated were (1) the cold bleed
(exit overboard with a control valve) and (2) hot bleed (exit overboard with a
variable admission turbine). The reasoning behind this selection was:

1. Cold Bleed With a Valve - It has a low performance penalty
(+8.3% SFC) and small engine component changes, except for a
23% larger compressor, It is a conventional system, which
has been used on other engines. With the flow exit overboard,
no return line to the engine is required.

2. Cold Bleed (Exit to Interturbine) With a Variable Admission
Turbine - Although this system has small engine effects, it is
complicated with a variable admission turbine and has a
vulnerable exit duct back to the engine interturbine.

3. Hot Bleed With a Variable Admission Turbine - It had good
performance ‘'nd small engine changes. It requires a variable
admission turbtine and has a vulnerable supply duct from the
interturbine.

4, Bleed and Burn - This system had good performance and small
engine changes, However, it is a complicated system with a
separate burner, fuel system, and ignition system,

5. Mixed Bleed - This system's performance was bad and required
two ducts.

The use of cold gas for a C&A turbine drive was considered to be more reliable

and less prone to introducing secondary damage in the event of a hit, as com-

pared to a hot gas system. In the event of failure or damage to the hot gas line,

the 2200°R interturbine gas products would be discharged into the rear engine com-
partment and would provide a source of ignition to anything combustible in the area.
The development risk and production cost of the hot gas components would be higher.
The interturbine bleed system would have a slight performance advantage and

might offer some weight advantage., Maintainability and installation flexibility

would be similar for the two systems.

Therefore, the interturbine bleed was discounted in favor of a cold gas bleed
based on the estimated superiority in reliability, vulnerability, development
risk, and cost of the cold gas system.

(4) Hydraulic

Integral Hydraulic Pump - An integral hydraulic pump, shown in Figure 18, was
not judged to be technically feasible on the basis of the minimum inside diameter
imposed by the gas generator shaft, This physical limitation would require
dynamic seal velocities of approximately 500 ft/sec and an excessive pump

inlet pressure to suppress cavitation.
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Figure 18, Integral Pumping Element
(6) Hybrid
A discussion of the hybrid systems considered is provided below:

1. Any C&A Drive - Integral Alternator - An integral alternator
to provide 60w power for the engine ignition and electronic
control was discounted. An integral generator was considered
to be practical from an engine integration standpoint, but
offered no vulnerability, weight, or reliability advantages over
a generator that could be incorporated as part of a lower speed
accessory or component, Separation of the generator from
the electronic control unit was also not considered to be ad-
vantazeous,

2% Mechanical/Electrical Interface - Considered a candidate with
an external electrical starter,

3. Mechanical/Pneumatic Interface - Considered a candidate with
an external pneumatic starter.

4, Mechanical/Hydraulic Interface - Considered a candidate with
a hydraulic starter.

5. Auxiliary Power Uuit - An auxiliary power unit for the C&A
drives was discounted. This unit would consist of a JP-fueled,
internal combustion engine that powered a C&A module. This
system was eliminated on the basis of reliability, where the
successful operation of the engine would depend on the functioning
of two separate powerplants,

6. Mechanical Drive - Electrical Fuel Pump Interface - A
variation of the mechanical drive systems was considered as
a candidate; it used an electric generator/motor coupling for
only the main fuel pump. This would simplify the flow control
fuel bypass and subsequent heat rejection problems, by allowing
an infinite variation of fuel pump speed 1w meet the engine
requirements.
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(6) Integral

Fuel and oil system pumping elements integral with the gas generator rotor were
discounted because of the excessive inlet pressure requirements (up to 1000 psi)
to suppress cavitation, The high inlet pressure requirement is a result of the
65, 000-rpm operating speed and the tip speeds, which are established by the gas
generator shaft diameter.

Oil pumps operating in a slinger configuration as an integral part of the engine
rotors were briefly considered and discounted for the following reasons:

(1) charging the center of the shaft(s) would require additional high velocity
dynamic seals, which would add to the heat rejection and system complexity;
(2) additional heat rejection to the oil would result from friction losses due to
the relative shaft velocities; (3) there are technological unknowns with this
pumping scheme, and they were considered beyond the development time frame
for this contract,

b. Starters

(1) Mechanical

This catefory includes those starter systems that have a mechanical interface
with the engine. These candidates, illustrated in Figure 19, are:

1, Electrical - Considered a candidate; APU/generator and
battery supplies considered

2, Hydraulic - Considered a candidate; APU/hydraulic pump and
accumulator blowdown supplies considered

3, Pneumatic - Considered a candidate; APU bleed and APU/
external combustor supplies considered

4, Self-Contained Starter - Considered a candidate; will not be
considered with the cluster gearbox C&A drive because of
packaging., Gas turbine, piston and Wankel engines considered
as candidates.

(2) Integral

This category includes those starter systems that do not require a mechanical
interface with the engine. Three integral pneumatic systems were considered
for further evaluation and are illustrated in Figure 20. A discussion of all the
integral start system candidates is provided below:

1. Integral Electric = An electrical starter integral with the gas
generator rotnr was sized for this application and was approxi-
mately the same size as the integral starter/generator
previously discussed. This system was discounted for the
same reasons outlined for the integral electric C&A drive
techniques.

2, Integral Hydraulic - An integral hydraulic starter was discounted
because of the requirement for high-pressure dynamic seals on
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3.

4,

BATTERY

HYDRAULIC
ACCUMULATOR

APU

FUEL

the gas generator rotor. These seals would be required to
direct the high-pressure, externally supplied fluid through a
start turbine and would operate in the nonstarting mode at
rubbing velocities of approximately 500 ft/sec due to the gas
generator shaft diameter. The seals would require a lift-off
feature, or would generate heat during engine operation above
start and would require cooling, This overall system was

not considered to be compatible with the development time frame.

Integral Pneumatic - Considered a candidate. Three integral
pneumatic systems were established: cold gas impingement,
cold gas supply using heat addition in the gas generator burner
with a closed engine inlet, and hot gas impingement using heat
addition in an external burner.

Cartridge - Cartridge starters for the primary starter mode
were discounted because of the logistics involved in supplying
starter grain assemblies., In addition, manual replacement of
starter grains between starts or the development of a multistart
cartridge grain feed system would be required. The potential
hazard of carrying grain assemblies onboard a military aircraft
was also considered as a disadvantage.

AIRFRAME/ENGINE INTERFACE
L -

STARTER MOTOR

STARTER MOTOR

STARTER MOTOR

1. MYDRAULI(:|
2. PNEUMATIC
3. ELECTRIC

SELF-CONTAINED STARTER

Figure 19, External Starter Systems
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Figure 20, Integral Starter Systems
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3. Selection of Five Candidate Systems

Of the 10 basic systems selected for further evaluation, there were 26 individual
C&A/starter concepts. It was required to reduce the candidate configurations
to five basic systems, using the established performance and rating criteria,
The logic network used to screen the candidates is illustrated in Figure 21 and
is summarized below:

15 Starters

a, External

° Select best airframe-powered starter (electric,
hydraulic, or pneumatic)

° Select best self-contained starter (gas turbine,
piston or Wankel)

] Compare and select best airframe-powered starter
vs best self-contained starter,

b. Integral

° Select best integral start mode (cold gas impinge-
ment, hot gas impingement, engine ram/closed
IGV's).
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2. C&A Drives

° Select best of mechanical drive with electric fuel pump
drive vs an all-mechanical drive,

) Select best of mechanical drive vs pneumatic drive.

® Select best hybrid drive (electrical, hydraulic, or
pneumatic),

Based on the analysis, the five candidate systems outlined below were selected
for further study:

Tower Shaft Drive/Gas Turbine Starter

Tower Shaft Drive/Cold Gas Impingement Starter
Cluster Gearbox Drive/Air Turbine Starter

Cluster Gearbox Drive/Cold Gas Impingement Starter
Hybrid Hydraulic Drive/Hydraulic Starter,

The analysis is summarized in the following paragraphs.,
a. External Starters
(1) Airframe-Supplied Power

A study was conducted to evaluate six different engine starter concepts for a twin-
engine helicopter application based on the weighted assessment criteria previously
established. The results of the study are summarized in Table 5 and show that
the APU-pneumatic had the highest rating.,

As indicated in Table 5, three of the starter concepts are powered by an auxiliary
powerplant and use hydraulic, pneumatic, and electric starter motors, respectively.
The fourth system uses a battery-powered electric starter and the fifth, an accum-
ulator blowdown hydraulic system. The last system is a combustion/turbine starter,
which requires a pressurized supply of air and fuel for the combustor, which has

an integral turbine starter,

Table 6 summarizes the data obtained from the references and used in this
evaluation. An explanation of how the assessment weightings were determined
follows:

1. Reliability - MTBF's were computed for each starter concept
by averaging the MTBF's given in the references for each com-
ponent when more than one data point was available,

The weightings were computed on the basis of giving the lowest
MTBF system 23% (maximum weighting for reliability) and

the other systems a lesser percentage proportional to their
MTBF's,
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3.

Vulnerability - Vulnerability was computed to be proportional

to the volume of the starter, This was done because the
probability of small-arms fire hitting any section of a helicopter
is proportional to its exposed area, Nothing was done in this
evaluation in consideration of locating components on the less
vulnerable areas of the helicopter or secondary damage (fire)
that could result from & hit. Those concepts that require fuel
for their operation will he more vulnerable when secondary
damage is considered.

Development Risk - The weights given each system for develop-
ment risk were based on engineering judgment, All of the
concepts being considered are state of the art, and the de-

gree of development risk will be related to the weight and

size reduction and performance design goals of each sys-

tem, The starter concepts that use an APU were judged

to be a little higher development risk primarily because

the APU size and weight and performance are based on

1975 technology. However, none of the concepts are con-
sidered a high development risk.

Cost - Some cost data were available in the referenced re-
ports; however, the weights given in Table 6 represent estima-
tions of the relative costs., The cost of the other concepts was
estimated in proportion to their relative complexity as com-
pared with the APU systems.

Weight and Volume - The assigned weightings were determined
by separately assessing weight and volume for each system based
on the lowest weight, with the lowest volume getting 10 points

and higher weights and larger volumes a proportionally lower
number of points. The system with the highest combined point
total for weight and volume was weighted 10, which is the
maximum for this design parameter,

Performance - The ability of the APU-powered starter concepts
to perform the starting function was judged to be equal. The
battery electric system was evaluated the lowest because of

its cold~-day limitations. The accumulator-hydraulic system
and the combustion starter system require pressurized oil,
pressurized fuel, and air supplies, respectively, which will
also have cold-day limitations., These limitations can be

taken care of by cold weather pressure topping using hand
pumps, but the performance was judged to be lower for this
reason,

Maintainavility - The maintainability of the starter concepts
was evaluated based on multiplying the reliability by the
average maintenance hours per maintenance action as de-
termined from the references.

Installation Flexibility - Battery-electric starter was con-
sidered best since the starter has good flexibility in mounting
to the engine and requires only a single electrical connection to
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the airframe. All other systems required additional and
more complex connections for airframe-to-engine interface
and were downgraded accordingly.

(2) Self-Contained Starters

A survey was made to evaluate the potential of using an engine-mounted, self-
contained, JP-fueled starter. Three basic engine types, gas turbine, piston
engine, and the Wankel, were considered.

A starter specification was generated and several manufacturers were surveyed.
The specification required the use of JP fuel and a provision for a manual secondary
starting system,

Assuming that cost and development interest were not overwhelming disadvantages,
the three candidates were compared as shown in Table 7 and rated as shown in
Table 8.

The study showed that a gas turbine starter (GTS) would provide the lightest, least
vulnerable, and most reliable overall starter package, but would require an expen-
sive development effort. Packaging of a GTS may also be a limitation in certain
installations.

TABLE 7. SELF-CONTAINED STARTER EVALUATION RATING

Weight Starter

Criteria Factor Gas Turbine Piston Engine Wankel
Reliability 23 23 12,7 17.0
Vulnerability 19 19 9.8 4,5
Development Risk 14 14 10.0 12,0
Cost 12 4 12,0 8.0
Weight and Volume 10 8 10.0 9.0
Performance 9 9 6.0 6.0
Maintainability 7 7 3.0 5,0
Installation Flexibility 6 S _5,0 _5,0
Total 100 90 68.5 66.5
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The results of the survey and discussions with vendors are summarized in the
following paragraphs.

a, Gas Turbine Starters

Gas turbine starters (GTS) in the 16-hp class are not being produced, but could

be developed for a specific application., Development, qualification, and pro-
duction costs would be relatively high, considering the requirement for an altitude
relight. For most applications, an APU is used for engine starting and also
provides other functions such as power generation or environmental conditioning,
The development and production cost is, therefore, spread over several functional
requirements.

The GTS configuration considered would incorporate a planetary reduction gear
drive and an overrunning clutch. A hydraulic accumulator blowdown start system
would be used. This configuration also allows the added flexibility of cold
cranking the main engines to check fuel and electrical systems,

b, Piston Engine

Several commercial piston engine manufacturers were contacted but showed no

interest in a starter development effort. The primary reason given was limited
production quantities. No major technical difficulties in using a piston-engined
starter were uncovered,

Starting at -65°F with JP fuel would require fuel injection or the use of a fuel
preheater. A dual-clutch arrangement would be used. A centrifugal clutch
would allow a smooth acceleration of the engine, and an overrunning clutch
would be used to decouple the starter,

.. Wankel Engine

Curtiss-Wright Corporation was visited to review the use of a Wankel engine for
a starter application. No technical difficulties were uncovered, during the dis-
cussions, which would limit the application of a Wankel. Little enthusiasm was
shown for participation in a development effort for this application, Again, the
reasoning used was the limlited production quantities, Welght and volume
estimates were provided.

An air-cooled Wankel was considered that dictated the use of large cooling fins
and influenced the size and weight estimate, Starting at -65°F would dictate

the use of a fuel Injection system, The operating speed considered was 12,000
to 15,000 rpm and would require development of a 3000-psli fuel injection system,
The reliability estimates for the Wankel were based on the relative complexity
as compared to a conventional piston engine.

(3) Airframe-Supplied Power vs Self-Contained Starters

Based on the previous study information, the best engine-mounted, self-con-
tained starter was then compared with the best engine-mounted starter that is
supplied with power from an external source. In this study, the GTS was com-
pared with the APU/pneumatic. The relative comparison is summarized in
Table 9 and shows the GTS with a slightly higher rating.
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TABLE 9. STARTER CONCEPT EVALUATION

Starter Concept - Rating

Welght APU
Criteria Factor Pneumatic Gas Turbine
Reliability 23 21,0 23.0
Vulnerability 19 19.0 19.0
Development Risk 14 14,0 14,0
Cost 12 12,0 12,0
Weight and Volume 10 10.0 7.4
Performance 9 7.0 9.0
Maintainability 7 6.6 7.0
Installation Flexibility 6 6.0 5.0
Total 100 95. 6 96, 4

These systems were rated closely, primarily because of the similarity of the
components, Both concepts use a gas generator and a turbine/gearbox for trans-
fer of energy to the engine. The GTS configuration uses a dedicated system for
each engine, while the APU/pneumatic uses a common gas generator and separate
air turbine starters, It should be noted that the cost of the APU and GTS systems
were rated similarly, assuming a specialized development effort for each system.
This will not be a valid assumption if the APU is used for other aircraft functions
and the cost is shared,

For this program, the GTS was used where the envelope allowed. For envelope-
limited applications, or in installations where an APU is required for other air-
frame functions, the APU/pneumatic system is recommended.

b, Integral Starters

Three candidate systems were evaluated that provided means of starting the main

engine without requiring a mechanical connection to the engine rotor. These
systems use bleed air supplied by a separate APU and are illustrated in Figure 22,
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Alr supplied by a pressurized bottle system was briefly considered but was
discounted on the basis of size, weight, and the potential hazard involved with
high-pressure pneumatic bottles subject to a military environment. A comparison
was made of a pressurized bottle system and an APU. The following APU was
chosen for comparison:

Bleed Flow = 0. 63 Ib/sec
P/P = 6.8
Volume = 0.47 ft3
Weight = 42 1b

5. 2 ft"lb

Torcue at Ignition

Since the total j;as mass (flowrate x time of starter operation) must be carried

in the bottle, the starter torque was varied to reduce total mass of air, as shown
in Figure 23. Even though flowrate increases with starter torque, the time to
starter cutoff and total mass flow decreases.

Increasing tank pressure reduces the required tank volume, as shown in Fig-
ure 24. Very high pressures are necessary to obtain a volume competitive

with an APU,

w ¥ | ] | ] i |

- TIME

- PROPELLANT REQUIRED (TOTAL)

- FLOWHATE (TOTAL)
§ 40 0.9
. FLOWRATE r21
& =
w -n.sg !
Q [=]
g 2120
o PROPELLANT| | 5
£ g J'.ﬁm.arf.-.ﬁr.-_"“'-i'g g
= 19
< &
z 0.6

18

= -
" TIME <
z L o8 | S
- 17

10 =k — e
48 5.2 5.6 6.0 6.4 6.8 1.2
STARTING TORQUE AT IGNITION - (b

Figure 23. Impingement Starting Characteri tics
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Figure 24, Tank Volume Requirements for Im-
pingement Starting Gas Required for
Two Starts

(1) Cold Gas Impingement

This system provides input energy to the gas generator rotor by impinging on
the rotor surface with a high-velocity gas supplied by an external APU, For
this application, several locations for the impingement area were considered.
A location at the rear of the gas generator turbine rotor was selected and is
shown in Figure 25. The addition of air at this location has a minimal effect on
normal engine operation, as opposed to an injection point on the compressor,
where the externally supplied air might interfere with normal compressor
operation,
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SECTION A-A
Figure 25. Impingement Starter

The characteristics of the selected coid gas impingement system are outlined
below:

Gas T = 600°R
Impingement Surface

Nozzle a =5.4
Mach Number 1.0
Pressure Ratio 1,893
Flowrate 1.226 Ib/sec
Total Orifice Area 1,928 ln'.‘2

(2) Hot Gas Impingement

This system Inputs energy to the gas generator rotor by impinging on the rotor
surface with a hot gas, which is supplied by an auxiliary combustor., The com-
bustor is engine-mounted close to the injection point and is provided air by an
external APU, A schematic of the system is shown in Figure 22. The system
requires the additional complexity of a separate ignition and fuel control system,
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The characteristics of the hot gas impingement system are outlined below:

Mach Number 1.0
Gas Temperature 2460°R
Pressure Ratio 1,893
Flowrate 0.58 1b/sec -
Tota] Orifice Area 1.348 in2
Mean Diameter of
Turbine Buckets 5.4 in,

(3) Engine Ram/Closed IGV's

This starting method uses bleed air from an APU for supplying air to the engine
burner during start, Air introduced into the engine burner is forced through

the engine turbine by closing the compressor inlet area. The compressor IGV's
are used to close the compressor inlet, as shown in Figure 26, With the com-
pressor inlet closed, work required to pump inlet air is eliminated and, there-
fore, reduces the horsepower required to rotate the engine rotor to any specific
speed. The air Introduced into the engine combustor is capable of rotating the
engine up to minimum fuel pumping speed, at which time fuel from the engine
fuel system Is also introduced Into the combustor and ignited. Additional

energy available from the combustion gases will now accelerate the rotor above

a self-sustaining (34, 000 rpm) rotational speed. The relationship of torque
avallable vs torque required for the rotor parasitic losses is shown in Fig-

ure 27, The auxiliary air supply is now removed from the engine combustor,

the IGV's are scheduled to their normal run condition, and the engine is accelerated
to ground idle. This transient s illustrated on the compressor map in Figure 28,
Since the transfer of air supply from the APU to the engine compressor requires
some transient time, the initial speed at which the transfer is .nitiated must be
high enough to allow for '"coast-down'' during the transient and retain an above-
self-sustained speed at the completion of the transfer, The expected engine
coast-down characteristics are shown in Figure 29, An APU flowrate of 0,42 pps
at a pressure ratio of 1,9 will be required,

(4) Rating of Integral Starters

The numerical ratings for the three systems are shown in Table 10. The cold
air impingement system received the highest rating (82, 3), primarily because
of the simplicity and proven capability. The engine ram with closed IGV's re-
ceived the next highest rating (81, 6) and was downgraded primarily because of
development risk, The hot air impingement system received the lowest overall

rating (72.3).
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Figure 27. Torque Characteristics of Ram Start/
Closed IGV's
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Figure 29, Engine Coast=Down Characteristic of

IGV's Open

It is worthwhile to note that if the engine ram with closed IGV's was experimentally
proven, the overxa*l rating would be better than the cold air impingement system,

The system woulad

require slightly more engine complexity, but would reduce the

airframe APU size by 66%, as compared to the cold gas impingement system,
Experimental work in this area is justifiable., A discussion of the ratings is
provided as follows:

1,

3.

Reliability - The cold air impingement system was considered
to be the simplest and most reliable. The hot air impingement
system was downgraded because it requires a separate igniter

and fuel system for the small burner. The third system (with

closed IGV's) requires sequencing of the IGV's and APU shut-

off valve,

Vulnerability - The criteria used were volume and number of
components (Table 11). The engine ram with closed IGV's was
considered as the baseline (volume = 0,25 ft3). The cold air
impingement system had a large volume (1, 08 £t3) but a fewer
number of components, The hot air impingement system re-
quired a burner plus a fuel and ignition system for both the
engine and the APU and had a volume of 0, 58 ft3,

Development Risk = The cold impingement was considered the
least risk. This system will start the engine; the only problem
is the interface with the engine/rotor for an optimum engine
system., The hot air impingement will also start the engine,
but, in addition to its interface with the engine/rotor, the
burner must be developed. The engine ram system with
closed IGV's will require experimental evaluation to define
the compressor recovery characteristics for the transient
when the IGV's are opened. The compressor must recover
from an unstable or stalled condition with the inlet closed

and establish a normal compressor-engine operating line
during the coast-down period.
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4, Production Cost = The cold impingement has a larger APU,
but everything else is standard. The hot impingement has a
smaller APU, but requires a separate burner, igniticn system,
and a fuel pump. The engine ram requires the smallest APU,
but more expensive IGV's and actuation system,

5. Weight and Volume - The sizes include the APU's accessories,
except for their starter systems. For the hot air impingement
system, the burner was considered as being mounted on the
engine; therefore, two would be required for a twin-engine in-
stallation,

6. Performance - The engine ram system with closed IGV's was
downrated because of the potential of a slight performance
penalty due to the IGV design,

(8 Maintainability -~ The hot air impingement system was down-
graded because of the large number of components (burner,
fuel nozzle, fuel pump, motor, and ignition system), The
engine ram system with closed IGV's was downgraded slightly
due to the special IGV's.,

8. Installation Flexibility - Volume and number of components were
used for the criteria. The engine ram had the smallest volume
and thus was the baseline. The cold air impingement was
downgraded because of its larger A PU volume, The hot air
impingement system was graded lowest because of volume and
the requirement that the burner (10 in, length and 5 in, diam-
eter) be mounted on the engine {o prevent long, hot lines.

c. Pneumatic vs Mechanical C&A Drive

The cold gas_ bleed pneumatic turbine accessory drive system previously selected
as the best pneumatic drive was compared with a tower shaft accessory drive
system using the selected weighting criteria previously established.

The tower shaft system received a rating of 92.1% vs a rating of 69.1% for the
cold gas bleed system, as shown in Table 12, Even though the cold gas bleed
system was compared only to a tower shaft system in this study, a comparison
with any other direct mechanical drive system such as a cluster gearbox arrange-
ment would yield similar results because mechanical drive systems, in general,
have similar advantages and disadvantages. Based on this analysis, tne cold

gas bleed system was eliminated as a candidate accessory drive system,
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TABLE 12, CONTROLS AND ACCESSORY DRIVE
SYSTEM EVALUATION RATING

Pneumatic vs Mechanical C&A Drive

Tower Shaft Pneumatic
Weight Rating Rating

Criteria Factor Factor Rating Factor Rating
Reliability 23 1.0 23.0 0.60 13.8
Vulnerability 19 1.0 19.0 0. 80 15,2
Development Risk 14 1,0 14,0 0.75 10,5
Cost 12 1.0 12,0 0.40 4,8
Weight and Volume 10 1.0 10,0 1,00 19.0
Performance 9 1.0 9.0 0.20 1.8
Maintainability 7 0.3 2.1 1.00 7.0
Installation Flexibility 6 0.5 3.0 1.00 6.0

Total Rating 100 92,1 69.1

The better of the two systems in each of the selection criteria is given a factor
of 1.0, and the other system is given a factor that indicates its ranking in that
category relative to the other, Figure 30 illustrates tower shaft and pneumatic
turbine drive systems used for this study. The tower shaft system showed ad-
vantages in all areas except maintainability and installation flexibility., The
reliability of the pneumatic system was downgraded due to the requirement for
a pneumatic control valve and speed control loop.

d. Electrical vs Mechanical Fuel Pump Drive

Consideration was given to an electrically driven variable-speed pump as opposed
to a conventional mechanically driven pump. The potential advantage of the
electrically driven pump would be in simplification of the control system, in that
the pump speed would be infinitely varied to set the desired main engine flow
instead of an in-line throttle valve or a bypass valve. The electrical drive system
will reduce the fuel pumping inefficiency and the heat rejection to the fuel, The
drive systems were evaluated as shown in Table 13,

The mechanical drive was considered superior in all areas except performance,
maintainability, and installation flexibility. The electric motor drive has the
disadvantage of size and weight, which also impact the vulnerability assessment.
The mechanical drive was selected for further consideration,
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Figure 30. Tower Shaft and Pneumatic Turbine Drive Systems




TABLE 13, FUEL PUMP EVALUATION RATING

Mechanical vs Electrical Driven Pumps

Mechanical Drive Electrical Drive
Selection Weight Rating Rating
Criteria Factor Factor Rating Factor Rating
Reliability 23 1.0 23,0 0.9 20,7
Vulnerability 19 1.0 19,0 0.8 15,2
Development Risk 14 1.0 14,0 0.9 12.6
Cost 12 1.0 12,0 0.6 7.2
Weight and Volume 10 1.0 10,0 0.5 5.0
Performance 9 0.5 4,5 1.0 9.0
Maintainability 7 0.8 5.6 1.0 7.0
Installation Flexibility 6 0.5 3.0 1.0 3.0
Total 10—0 T.l ;9_.7

e. Hybrid C&A Pump Drive Systems

Three hybrid drive systems, shown in Figure 31, which used either a hydraulic,
pneumatic or electrical interface between a tower shaft drive and the accessory
package, were considered,

INTERFACE
HYDRAULIC, PNEUMATIC, OR ELECTRICAL

] MECHANICAL DRIVEN

f—b AcCesSORY ./  BIRASILC PUMP.
DRIVEMOTOR | | |  cOMPRESSOR, OR
/ ELECTRICAL GENERATOR)

+1

Figure 31. Candidate C&A Drtve
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The hybrids offered flexibility in the location of the C&A components in that only
the drive motor must be located in the vicinity of the tower shaft, In all three
cases, the drive motor also was used as a starter for the main engine.

The electrical system was discounted on the basis of the starter system studies,
which showed that an electrical system had disadvantages in overall size,
performance, and weight, In addition, the size and weight of the engine-mounted
starter/generator and drive motor were not competitive with those of other sys-
tems in this horsepower class,

The hydraulic and pneumatic hybrid systems were studied in greater detail,

since the hydraulic and pneumatic start systems were rated closely. The

hydraulic starter/pump and drive motor and the pneumatic starter/compressor and
drive turbine systems are shown schematically in Figures 32 and 32. respectively.

The mechanical /hydraulic hybrid system was selected for further evaluation,
A relative ranking of the two systems is shown in Table 14,

A discussion of the relative rankings of the two systems is shown below:

1, Reliability - The relative complexities of the two systems are
considered to be similar. The pneumatic system is rated
higher due to the insensitivity to contamination and the demon-
strated improved reliability of pneumatic drive components,

2: Vulnerability - The pneumatic system was dcwnrated because
of the large-diameter (approximately 7 in.) starter/compressor
and drive turbine required. :

3. Development Risk = The pneumatic system was downrated
due to the development risk associated with the required con-
vertible starter/compressor.

4, Cost - The relative costs of the two systems were judged to be
similar,

5. Weight and Volume - The hydraulic system has the largest
weight penalty, but the pneumatic system requires the largest
volume. The hydraulic system was rated slightly higher on
an overall weight and volume basis.

6. Performance - The hydraulic drive system (pump and motor
combined) had the best overall efficiency, 73%, as compared
to the pneumatic, 50%.

7. Maintainability = The pneumatic system was rated easier to
maintain, 4

8. Installation Flexibility = The hydraulic system has the best
installation flexibility based on smaller components,
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TABLE 14. HYBRID CONTROL AND ACCESSORY DRIVE SYSTEM

Hydraulic vs Pneumatic Evaluation Rating

Hydraulic Pneumatic
. Weight Rating Rating

Criteria Factor Factor Rating Factor Rating
Reliability 23 0.8 18.4 1.00 23.0
Vulnerability 19 1.0 19,0 0.60 11,4
Development Risk 14 1.0 14.0 0,80 11,2
Cost 12 1,0 12,0 1.00 12,0
Weight and Volume 10 1.0 10.0 0.90 9.0
Performance 9 1,0 9.0 0.80 7.2
Maintainability 7 0.8 5.6 1,00 7.0
Installation Flexibility 6 1.0 6.0 0.18 4,8

Total -1_0-6 QT.O- m—

4, Selection of Two Candidate Systems

Five control and accessory drive/starter systems were evaluated during this
phase of the program., Preliminary design layouts of the five systems were made,
and the systems were evaluated using the performance and rating criteria estab-
lished in the Requirements Definition Phase. The control, fuel pump, PTO, and
oil system components were considered to be common for this study. The five
candidate control and accessory drive/starter configurations evaluated are out-
lined below.

a. C&A Component Descripfion
(1)  Tower Shaft C&A Drive/Gas Turbine Starter (TS/GTS)

A tower shaft-driven gearbox is used to drive a 65,000-rpm combination fuel pump
and alternator, a 20,000-rpm PTO, and a 10,000-rpm oil pump. A self-contained
gas turbine starter is mounted on a 20, 000-rpm engine gearbox pad for engine
starting. The starter consists of a gas generator, a hot gas power turbine, and a
gear reduction system for the power turbine, An overrunning clutch is used to
decouple the starter. This cunfiguration is shown in Figure 34.

(2) Tower Shaft C&A Drive/Impingement Starter (TS/IS)

A tower shaft drive, as described in system Np. 1, is used for the C&A com-
pcnents. Starting is accomplished by a cold gas impingement starter integral
with the gas generator turbine. The starter is powered by an airframe-mounted
APU, with a compressor discharge (cold gas) bleed. ‘'lhis configuration is shown
in Figure 35.
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(3) Cluster Gearbox C&A Drive/Air Turbine Starter (CGB/ATS)

The drives for the C&A components are provided by gears that are clustered
around the gas generator drive shaft, The C&A component drive speeds are
the same as described in system No. 1. An air turbine starter is used and is
mechanically connected to the gas generator rotor through the cluster gearing.
The air turbine starter consists of a high-speed turbine and a gear reduction
system to couple with a 20, 000-rpm pad. An overrunning clutch is used to
decouple the starter system. This configuration is shown in Figure 36.

{4) Cluster Gearbox C&A Drive/Impingement Starter (CGB/IS)

The C&A drive is the same as described in system No. 3, and the starter system
is the same as described in system No. 2. This configuration is shown in
Figure 37.

(5) Hybrid Mechanical, Hydraulic C&A Drive/Hydraulic Starter (HD/HS)

The hybrid C&A drive used consists of a hydraulic starter/pump that is connected
to the gas generator shaft by a tower shaft, and a hydraulic motor, which is used
to power the C&A components. An accumulator blowdown system is used during
the start transien: to drive the hydraulic starter/pump and for powering the C&A
drive motor. After the engine is self-sustaining, the hydraulic starter is switched
to a pumping mode and is used to drive the C&A components. The configuration

is shown in Figure 38.

b. Analysis

'The five systems were assessed for each of the established rating criteria. The
results are summarized in Table 15 and show the CGB/ATS starter and the TS/
GTS as the two systems selected for detailed design. The ratings are discussed
below:

1., Rellability - A reliability assessment was made for both the
starter system and the C&A drive. The starter system reliability
was given a 20% welghting and the C&A drive an 80% welighting,
The results of the analysis are summarized in Table 16.

The cluster gearbox drives were rated as being more reliable
than the tower shaft drive because of fewer components in the
drive train, The CGB/IS and CGB/ATS systems were rated
closely together and ranked first and second, respectively.
The TS/IS and TS/GTS systems were also rated closely to-
gether and ranked third and fourth, respectively. The HD/HS
had the lowest reliability because of the hydraulic pump and
drive motor In the drive train,

2, Vulnerablility - The vulnerability of the total system was
determined by an assessment of both the starter system and
C&A drive system components, Since the protection afforded
by the airframe is not known, the total volume of the airframe-
mounted starter system components was used as the vulnerability
criterion, The starter vulnerability was given a 25% weighting.
The exposed vulnerable area of the engine-mounted C&A drive
components was assessed and used as the vulnerability criterion,
The C&A drive vulnerability was given a 75% weighting.
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6.

The vulnerability assessments are summarized in Table 17,
The TS/GTS system received the highest ratiny, primarily
because the relatively large GTS Afforded protection to the

C&A drive components. The CGB/ATS was rated second and
reflects a smaller engine-mounted starter, The TS/IS and
CGB/IS system ratings reflect no protection from an engine-
mounted starter and a larger airframe-mounted starter APU,
The HD/HS system received the lowest vulnerability rating
because of the large exposed vulnerable area of the hydraulic
pump and drive motor.

Development Risk - The C&A drive system/starter configurations
for all systems except the HD/HS were essentially state of the
art and were judged to have a similar development risk. The
HD/HS system requires a convertible starter motor/pump and

a C&A drive motor that must be developed to be extremely
reliable. The hybrid system was therefore the only system
downrated for development risk. ’

Cost - The cost of the systems was based on estimated production
pricing. The development cost of the components was not re-
flected in the cost evaluation, with the assumption that all sys-
tems would require the same relative amount of development
effort. The HD/HS system had the lowest cost because of the
lack of an APU or GTS in the start system.

The cost of the other candidate systems was estimated to be
essentially the same. It should be noted, however, that if the
APU used in systems Nos. 2, 3, and 4 was used for other air-
frame services in addition to starting, then the cost could be
shared and a higher rating assessed.

Weight and Volume - The weight and volume of the total starter/
C&A drive system was assessed on the basis of preliminary
component designs. The weight rating was given 50% of the
total, and the volume rating was given the remaining 50%. The
weight and volume tabulations are shown in Table 18. The
tabulation shows that the CGB/ATS system has the lowest overall
weight and volume and received the highest rating, The TS/GTS
system was second, and the rating reflected a volume penalty
for the two GTS systems. The HD/HS system was rated third and
had the highest weight but the second lowest volume., The CGB/IS
and TS/IS systems were rated fourth and fifth, respectively, pri-
marily because of the large APU required for starting,

[}
Performance - The performance of the systems was evaluated
for both starting and during normal operation. The starter
efficiency was evaluated in terms of the required starter fuel
flow and was givena 10% weighting in the evaluation, The C&A
drive performance was weighted at 90% and evaluated on the
basis of drive efficiency. A tabulation of the performance
factors is shown in Table 19, The mechanical drives were
all rated at the same relative efficiency. The HD/HS efficiency
was lower and reflected the product of efficiencies of the tower
shaft drive, hydraulic pump, and hydraulic motor,
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7. Maintainability - The systems were evaluated on a comparative
basis for maintainability. The results of the evaluation are
summarized in Table 20 and show the CGB/ATS system
as the easiest to maintain, Comments on the five systems th..:
guided this rating are summarized in Table 21.

8. Installation Flexibility -~ Installation flexibility of the systems
was evaluated, including both system volume and installation
complexity. The volume was weighted at 50%, and the in-
stallation complexity was weighted the remaining 50%. The
results are summarized in Table 22 and show the CGB/ATS
with the highest rating, The GTS/TS system was downgraded
because of the potential interference with the airframe gear-
box, and the TS/IS and CGB/IS systems were downgraded be-
cause of the large APU required for start.

TABLE 20. MAINTAINABILITY (RATING = 7%)

C&A Drive/Starter Relative Rating,

Configuration Rating % Ranking

1. TS/GTS 0.75 5.25 2

2, TS/IS 0.69 4,83 4

3. CGB/ATS 1,00 7.00 1

4, CGB/IS 0.72 5,94 3

5. HD/HS 0.53 3.70 5

TABLE 21. MAINTAINABILITY COMMENTS
1, TS/GTS

a, Two GTS units are required,

b. Tower shaft is a more complicated design, with more bearings
and gears.,

Ce There is less flexibility in mounting than remote APU,

d. There are fewer components than APU-driven ATS,

€. Fuel filters and GTS controls add maintenance.

f. GTS mounting has good accessibility.
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TABLE 21, MAINTAINABILITY COMMENTS (Continued)

TS/1S

a. Requirement for ATS is eliminated.

b, Remote APU results in good mounting flexibility.

Cc. Air lines, nozzles, and filters add maintenance problems.

d. APU and APU starter are very large and heavy for a pneu-
matic system.

e. Pneumatic supply lines are nota fire hazard and subject to
leakage monitoring,

f. Air nozzles may have an accessibility problem.
CGB/ATS
a. Pneumatic supply lines are not a fire hazard and subject

to leakage monitoring.
h, Remote APU results in mounting flexibility.
c. Configuration is smallest and lightest considered,
d. Separate APU and ATS add an additional component.

e. Integral gearbox is less complicated than tower shaft configura-
tion, but must be disassembled to gain access to oil pump.

f. Pneumatic system has fewer contamination problems than
hydraulic system.

CGB/IS
a. Same considerations as TS/IS, except for gearbox.

b, Integral gearbox is less complicated than tower shaft configura-
tion, but must be disassembled to gain access to oil pump.
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TABLE 21, MAINTAINABILITY COMMENTS (Continued)

5. HD/HS

a, Hydraulic system is same as initial starter; therefore, it is
relatively compact.

b, Accessories are driven hydraulically, can be remotely
mounted, and are regulated independently of engine speed.,

c. Hydraulic pumps are run full time.

d. Hydraulic systems are subject to frequent leakage problems,
and they are also a fire hazard.

c. Hydraulic systems are sensitive to contamination

f. System is the heaviest of all considered.

B. FRONT-DRIVE STUDY CONCLUSIONS

The analysis conducted for a front drive engine configuration with a 15-hp PTO
indicates that the controls and accessory drive are best accomplished by a mechanical
drive, Either a cluster gearbox or a tower shafi arrangement can be considered.

Starter system studies have indicated that the best overall engine/airframe starter
choice is the gas turbine starter or the air turbine starter. In installations where
the development cost of a gas turbine starter or an APU for an air turbine starter
is prohibitive, then a battery/electric or accumulator/hydraulic motor start system
can be considered.

Certain observations from the initial design studies were considered in the recom-
mendations for later program phases and are summarized below.

° The requirement for provision of a PTO is a major factor in
configuring the gearbox. This relatively large, low-speed
drive contributes significantly to gearbox size,

° Control and accessory packaging is compromised by a front-
drive power turbine. Integral or direct-drive components
are not possible.

) The basic engine design is not optimized for a front-drive
power turbine, as compared to a rear drive, because of the
impact of the power turbine shaft on the gas generator bore
diameter.
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SECTION V

CONCEPTUAL DESIGN - REAR-DRIVE ENGINE

The study was continued to define the optimum C&A system for a rear-drive en-
gine., The requirements of the baseline engine and C&A components were estab-
lishod. Engine definition studies were conducted and led to definition of the

be seline engine configuration. The candidate C&A drives and starter techniques

wzre defined, and a matrix of possible C&A drive/starter systems was established.

7The candidate systems were analyzed, and two systems were recommended for
additional study.

A, ENGINE DEFINITION STUDIES

Prior to establishing the baseline rear-drive engine configuration, engine defini-
tion studies were conducted in several areas to evaluate feasibility of selected

candidate configurations.
1. Air Bearing Application Study

The front-drive engine studies showed that the engine oil system represented a
major portion of the engine's vulnerable area. To evaluate complete elimination
of the oil system, further analyses were conducted to determine if an all-air-
bearing engine was within the 1977 development time frame,

A preliminary engine layout, shown in Figure 39, was established, employing all
air bearings. From this drawing, shaft critical speeds and air bearing loads
were evaluated. The gas generator configuration has a rotor bending mode at
47,800 rpm, which is less than the expected idle speed. For the engine to pass
through this mode without intolerable bearing loads and/or deflections, multi-
plane balancing (which is not currently state of the art) would be required, The
power turbine was not analyzed, but its critical speed was estimated to be

acceptable,

This analysis showed that the thrust bearing size and location (more distance
between bearings) created critical speed problems. Improvements in the gas
generator critical speed could be obtained by reducing the diameter of the thrust
hearing piston and the distance between bearings.

Bearing thrust and radial loads were established as shown below:
1. Engine Unbalanced Loads
Gas Generator Thrust 370 1b

Gas Generator Radial = 771b
Power Turbine Thrust 1135 1b

2, Engine Maneuver Loads
Gas Generator Thrust = 28 1b x 10g = 280 1b

Gas Generator Radial = 14 1bx 10g = 1401b
Power Turbine Thrust = 151b x 10g = 1501b
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Based on the loads established, consideration was given to the feasibility of an
all-air-bearing engine which would be consistent with a 1:/77 development time in
frame. This was accomplished by reviewing experimental data and through
conversations with Mechanical Technology, Incorporated (MTI). Tk= literature
survey indicated that the necessary analytical tools needed to detersine opera-
ting characteristics of air bearings exist today, but the test data necessary to
substantiate these theoretical predictions for air thrust bearings do not. Based
on discussions with MTI, the bearing load/area cannot exceed 18 to 20 lb/in.2 for
thrust bearings and 490 to 50 1b/in,2 for radial bearings. From thrust and radial
loads calculated, radial bearings for the gas generator offer no problem at

12.3 1b/in.2, The power turbine radial load/area was not calculated, but it is ex~
pected to be in the same order of magnitude. Thrust bearing load/area was
much larger than allowable, with the gas generator at 32.5 1b/in,2 and the power
turbine at 64 1b/in,2,

Based on present technology, thermal and dynamic instabilities are problems
associated with the thrust balance pistons of the size used in the conceptual lay-
out. Increasing the piston diameter, as would be required to lower the load per
unit area, would increase instability problems. The effect or severity of bearing
instability could be evaluated only by appropriate testing.

The adverse impact on engine critical speed of a larger thrust balance piston also
is not desirable. Thrust balancing techniques are not expected to change by 1977,
The load area ratio for the gas generator could be reduced by baselining an engine
using a shrouded centrifugal compressor in combination with a radial inflow tur-
bine. The thrust balance piston on the power turbine could be eliminated by
allowing the airframe gearbox to support the power turbine thrust load. A con-
ceptual airframe-gearbox-supported power turbine is shown in Figure 40.

In summary, for the selected baseline engine configuration, radial air bearings
appear to be within the 1977 development time frame, while thrust bearings do
not. The power turbine load distribution requirements greatly exceed the demon-
strated thrust bearing capabilities. The gas generator thrust load distribution
requirements are much closer to the demonstrated levels, but are sufficiently in
excess of these levels to also be considered beyond the 1977 development time
frame.

An engine without an oil system is still a most desirable configuration and should
be further pursued. For this application, complete elimination of the oil system
would require the following efforts: (1) further experimental development of air
thrust bearings for the gas generator to increase their load-carrying capability

by a factor of 2 to 3, and (2) use of an engine/airframe interface, where the power
turbine is supported by the airframe gearbox.

2, Bearing Configuration/Arrangement Study
The bearing configuration and arrangement for the baseline engine were established
from an optimization trade-off study. The study indicated that at least one oil-

lubricated bearing would be required on each rotor to support the unbalanced
thrust loads,
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For the gas generator rotor, the forward bearing location was chosen for the thrust
bearing. The forward location allowed close control of the centrifugal compressor
clearances, which would not be possible with a thrust bearing location in the

rear, since dimensional tolerances and thermal growth differences of the rotor
assembly, relative to the compressor case, would require excessive compressor
clearances. A radial air bearing was selected for the rear support of the gas
generator, based on the adequate load~carrying capability of air bearings and

the benefit of reducing the overall oil system volume and weight.

The heat generation summary for the selected configuration is shown in Table 23.

TABLE 23. BASELINE ENGINE HEAT GENERATION SUMMARY

Heat Generation ~ Btu/min

Compartment Location SLS Ground Idle
Front Compartment Ambient -47.8 -41.1
Middle Compartment Ambient Air Cooled Air Cooled
Rear Compartment Ambient +17.7 +3.1
Compartment Seal Friction All Seli—.a\cting All Self—.‘(\)cting
Seal Leakage Negligible Negligible
Gas Generator Thrust Bearing 66 42,5
(Tandem)

Power Turbine Thrus! Bearing 24,1 24,1

Gas Generator Journal Air Cooled Air Cooled
Power Turbine Journal Air Cooled Air Cooled
Gearhox x58.0 <58.0
Total +118 <86.6

The bearing configuration for the power turbine was selected by comparison and
rating of several candidate configurations. Study layouts of the configurations
were made and relative comparison of the candidates accomplished. The candi-
date comparisons are outlined in Table 24.

The No. 4 candidate (rear overhung turbine with a forward air bearing, and a rear
oil-lubricated bearing) was selected based on the shortest coupling length and
superior vulnerability resistance. This configuration also had equal or superior
ratings in all other areas when compared to the other candidates.

102



aurjeseyg
uveyJ, 193319¢q

b, (0]

a8uaAeog 110 auO
A1ddng 110 3uQ
A1ddng a1y auQ

aurjaseg
uey], ssoT

aujjoseq uey,L,
S50 Yonp

aureseqg
se 2weg

aujeseq ueyy,
s89T APU31IS

Jeys omL
1Jeys om 1,

pajeoLIqny 10

auraseg
SEe owes

MO

a8uaaeoS 1O U
A1ddng 110 2uQ
£1ddng a1y auQ

aurpeseq
uey], SS9

aureseq uey[,
Ss97 Yyonp

auraseg
St owesg

aurpaseq
se auieg

1JeYS oML
1JBYS 921y,

Pa1BdHIqQIT [10

aureseq
S ouwes

MO

33uaA®BOS 1O 3uO
A1ddng 110 2uO
Aiddng a1y omj,

aurjaseyg
ueyJ, SS9

auljaseq
ueyJ, SSoT

aurjeseg
se aweg

aurjoseg
Se aureg

yeys om L,
1yeyS 931y,

PaIBdLIQIT IO

auraseq

. (0]

aduaa®rag 110 2UO
A1ddns 110 auQ
A1ddng ary auQ

aureseq

aurpaeseq

auljasegqg

aurasegqg
1yEYS oM,
1eyS oM,

pajedLIqny 10

aouerIsSIsay
Annqeasunp

paads reonua)

paaInbay 83014199

juaunxedwo) Suriesq

peo
1e9H wWaIs4S N0

B3Iy P3jlom
ud)s4s 110

y18uaT [TBI8A0

y33ud Burpdno)
sTess 110
sJeas J1y

adf], Burxesag aeoy

1ay a1y ay pajeduaqny 10 ad4 1 Buwreag juoxrg
aeay J9U3) paemiogq piemioq UOTIEDO] SUIqaNn],
14 € 4 ailaseyq

SALVAIANVO NOILVEADIINOD ONIYVIAL “¥¢ ATdV.L

103



3. Integral Start Turbine

The integral start technique, previously selected and described in Section IV, used
directional jets that impinged on buckets machined on the gas generator turbire,
This approach, while simple in concept, required a relatively large APU (1,26 b/
sec at a pressure ratio of 2, 36), The C&A systems using this integral start tech-
nique were, therefore, penalized due to the weight, volume, and vulnerability von-
siderations of the APU.

In an attempt to make the integral start system a more viable candidate, con-
sideration was given to means of improving system efficiency. A design evalua-
tion was made of a separate, dedicated starter turbine integral with the gas gene-
rator rotor. The configuration evaluated is shown in Figure 41. This system
used a 5, 02-in, diameter turbine and a 30% admission nozzle, and required an
APU flowrate of 0. 37 lb/sec at a pressure ratio of 4.0,

The disadvantages of this design prevented its application, The most significant
was the impact on engine critical speed. The starter turbine mass and increased
engine rotor length reduced the critical speed margin below the desired 30%,
considered minimum for the engine design. The second most significant impact
was on overall engine performance. A 10-hp parasite drag was predicted for

the starter turbine at 100% engine operating speed, and 1% of engine airflow leak-
age was predicted due to additional dynamic seal requirements, Pressure losses
in the turbine exhaust case because of the large struts required for the start tur-
bine air inlet and exhaust passages were anticipated, but were not evaluated. The
turbine added 2. 1 in, to the engine length and 8.1 lb to the overall weight, There-
fore, this integral starter turbine was not recommended, and the impingement
starter system was retained as the prime integral starter candidate.

B. BASELINE ENGINE DEFINITION

The engine requirements for the rear drive configuration were identical to those
described in Section II, except that this engine (1) has a single-stage rear drive
power turbine with a design speed of 36,000 rpm and (2) does not have a 15-hp,
20,000-rpm PTO.,

The axial power turbine was sized to operate at 36,000 rpm to obtain the desired
operating efficiency with a single stage. Since the rear-drive engine facilitates
use of a short power turbine shaft, critical speed problems are not encountered
at this higher rotor speed, as compared to the long shaft required for the front-
drive engine configuration. A lower power turbine speed could be provided at
the expense of a second turbine stage.
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The baseline engine bearing and seal configuration is described as follows:
1. Front Bearing Compartment

Oil-Lubricated, Antifriction Bearings
Hydrodynamic Lift-off Seals
Elastomeric Damper

2, Middle Bearing Compartment
Tilting Pad Radial Air Bearings
3. Rear Bearing Compartment

Oil-Lubricated, Antifriction Bearings
Hydrodynamic Lift-off Seals

4, Heat Exchanger

Air/0Oil Heat Exchanger - Integral With Front Bearing Compartment
Oil Temperature - 200 to 250°F

5. Backup Oil System
Oil Mist - 6-min Capability
A cross-section:'1 view of the baseline engine configuration is shown in Figure 42.
C. CANDIDA'TE C&A DRIVE/STARTER DESCRIPTIONS

During this program phase, the method of driving the C&A components and the
method of starting the baseline engine were considered. Systems that were
evaluated as not technically applicable or beyond the state of the art for a 1977
development time frame during the study of a front-drive engine were not con-
sidered if the design requirements for application to a rear-drive engine were
essentially the same. The C&A drive systems and the starter systems initially
considered in the study are outlined below.

1. Candidate C&A Drives

a, Mechanical

(1) Tower Shaft Drive - Tower shaft drive through a
gearbox with multiple gearing for the various re-
quired accessory drives

(2) Cluster Gearbox - Cluster gearbox mounted about
centerline of engine with multiple gearing for the
various required accessory drives

(3) Single-Speed Drive - Tower shaft or cluster gear
drives a single-speed drive shaft. All required
accessory drives would run in a tandem arrange-
ment at the same speed from this shaft.
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Pneumatic

1)

(2)

(3)

(4)

Cold Gas Bleed - Engine airflow gas bleed upstream
of the burner is used for providing power for the
required accessory drives.

Bleed and Burn - Engineairflow gas bleed upstream
of the main burner is fed through a separate com-
bustor, mixed with a fuel supply, and burned. The
combustion products are then used to provide power
for the required accessory drives.

Interturbine Bleed - Engine airflow gas bleed down-
stream of the gas generator turbine is bled and used
to provide power for the required accessory drives,

Mixed Bleed - Engine airflow gas bleed is bled from
the engine, both upstream of the burner and down-
stream of the gas generator turbine. The hot and
cold gases are mixed to provide power forthe re-
quired accessory drives,

Hybrid

(1)

(2)

(3)

(4)

©®)

Any C&A Drivz/Integral Generator - All accessories
are driven by mechanical or pneumatic power with an
electrical generator integrated with the gas generator
rotor to supply electrical power for the control and
ignition system.

Mechanical/Pneumatic Interface - A tower shaft is
used to drive a separate compressor, The com-
pressor is used to power the required accessory
drives,

Mechanical /Hydraulic Interface - A tower shaft is
used to drive a separate hydraulic pump. The hy-
draulic pumrp is used to power the required acces-
sory drives.

Mechanical Drive/Electrical Fuel Pump Interface -
An electric generator, integrated with the gas gen-
erator rotor, will provide electric power for driving
a variable-speed fuel pump. All other accessories
are driven mechanically,

Mechanical Drive/Electrical or Pneumatic Oil Pump
Interface ~ An electric generator, integrated with
the gas generator rotor, or a pneumatic bleed from
the engine compressor will provide power for a
variable-speed oil pump. All other accessories

are driven mechanically,
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2. Candidate Starter Systems
a, Mechanical

(1) Mechanical/Electric - An electrically powered
starter driving through a gearbox connected to the
gas generator rotor. Starting power is provided
by APU/generator or battery system.

(2) Mechanical/Hydraulic - A hydraulic-powered
starter driving through a gearbox connected to the
gas generator rotor. Starting power is provided
by APU/hydraulic pump or accumulator blowdown.

(3) Mechanical/Pneumatic - A pneumatic-powered
starter driving through a gearbox connected to the
gas generator rotor. Starting power is provided
by APU bleed.

(4) Self-Contained Starter - A self-contained gas tur-
bine, piston, or Wankel engine mechanically con-
nected to the gas generator rotor.

h. Integral

(1) Integral Pneumatic - An external APU supplying
bleed air, which is used in either of the three fol-
lowing methods: (1) cold gas, (2) heat addition
through combustion in the gas generator burner
with closed engine inlet, and (3) hot gas using heat
addition through combustion in an external burner.

1. Selection of Six Candidate Systems

The C&A drive systems considered for this phase were divided into 12 schemes.
The starter systems were broken into two basic divisions: mechanical drive
input and integral starters. A matrix of the candidate systems is shown in
Table 25. The matrix consists of the 12 C&A drive schemes, combined with the
2 basic starter drive systems, including 7 types of starter drive schemes. The
total combinations of C&A drives and starters created 84 possible systems for
study.

Each candidate system was reviewed in light of the trade-off studies and analyses
conducted during the analysis of a front-drive engine. If the analysis was
directly applicable, the same conclusions were used. If the requirements had
changed for the rear-drive engine, the previous results were reviewed in light

of the new requirements, and additional analyses were conducted where required.
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Six candidate systems were selected for evaluation and are outlined below:

Tower Shaft Drive/Air Turbine Starter

Tower Shaft Drive/Impingement Starter

Cluster Gearbox Drive/Air Turbine Starter

Cluster Gearbox Drive/Impingement Starter

Single~-Speed Drive/Impingement Starter

6. Single-Speed Drive/Impingement Starter/Integral Alternator

o QO DN =
. e = .

An outline/discussion of the rationale and analyses required to obtain the selected
systems follows:

1. Candidate C&A Drives
a, Mechanical
(1) Tower Shaft - Considered a candidate
(2) Cluster Gearbox - Considered a candidate

(3) Single-Speed Drive - Considered a candidate with
the module operating at 15,000 rpm.

b. Pneumatic

The pneumatic drive system selected during the
front-drive engine study was the cold gas bleed.
This selection was also considered applicable to
the rear-drive engine,

During the front-drive analysis, the best pneumatic
drive was compared with a mechanical drive, and
the mechanical drive was selected, based on ad-
vantages in all areas except maintainability and
instal'ation flexibility with overall ratings of 92.1
(mechanicai) vs 69.1 (pneumatic). The reduced
performance penalty for a pneumatic drive for this
application (less bleed air required due to deletion
of PTO) would not significantly alter this evaluation,
Therefore, pneumatic drive systems were dis-
counted in favor of mechanical drives.

C. Hybrid
(1) Any C&A Drive/Integral Generator

An integral generator was discussed and discounted
for the front-drive engine, based pirimarily on the
fact that several component drive pads were avail-
able that offered more favorable opportunities for
integration of the generator as compared to the basic
engine. For the rear-drive engine application, the
integral generator was considered a candidate only
for the single-speed module drive operating at
15,000 rpm.
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(3)
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Mechanical/Pneumatic Interface

The front-drive analysis showed that the mechanical/
hydraulic interface was preferred over the
mechanical/pneumatic system, based on superior

or equal ratings in all areas except reliability and
maintainability, The overall ratings were 94.0
(hydraulic) vs 85.6 (pneumatic), This system
selection was also considered applicable to a rear-
drive engine without PTO, since the drive system
components are sized by the starter requirements.

Mechanical/Hydraulic Interface

Front-drive analyses of a mechanical/hydraulic
drive showed that the mechanical /hydraulic drive
had lower overall ratings in the areas of reliability,
vulnerability, development risk, performance, and
maintainahility as compared to any mechanical
drives. This analysis was also considered valid for
a rear-drive engine without PTO since the drive
system components were sized by the starter re-
quirements.

Mechanical Drive/Electrical Fuel Pump Interface

During the front-drive engine study, consideration
was given to electrically driving the fuel pump from
an integral generator. This system was discounted
in favor of a mechunical drive based on higher
ratings of the mechanical drive in all areas except
performance, maintainability, and installation
flexibility with an overall rating of 91.1 (mechanical)
vs 79.6 (mechanical/electric). The game con-
clusions are applicable to a rear-drive engine with-
out PTO.

Mechanical Drive/Electrical or Pneumatic Oil
Pump Interface

During this phase, the study was expanded to
cover the possibility of an electrically or pneu-
matically driven oil pump. Since the oil system
flow requirements are essentially a direct func-
tion of engine speed, no engine performance im-
provements were anticipated when compared to
a mechanical drive. The advantage of an elec-
trically or pneumatically driven oil pump would
be eliminating or simplifying the gearbox. Since
the haseline engine definition studies defined an
engine with an oil-lubricated, gas generator for-
ward bearing, 1